Evidence for chloride ions as intracellular messenger substances in astrocytes.

نویسندگان

  • L K Bekar
  • W Walz
چکیده

Cultured rat hippocampal astrocytes were used to investigate the mechanism underlying the suppression of Ba2+-sensitive K+ currents by GABAA receptor activation. Muscimol application had two effects on whole cell currents: opening of the well-known Cl- channel of the GABAA receptor and a secondary longer-lasting blockade of outward K+ currents displaying both peak and plateau phases. This blockade was independent of both Na+ (inside and outside) and ATP in the pipette. It also seemed to be independent of muscimol binding to the receptor because picrotoxin application showed no effect on the K+ conductance. The effect is blocked when anion efflux is prevented by replacing Cl- with gluconate (both inside and out) and is enhanced with more permeant anions such as Br- and I-. Moreover, the effect is reproduced in the absence of muscimol by promoting Cl- efflux via lowering of extracellular Cl- levels. These results, along with the requirement for Cl- efflux in muscimol experiments, show a strong dependency of the secondary blockade on Cl- efflux through the Cl- channel of the GABAA receptor. We therefore conclude that changes in the intracellular Cl- concentration alter the outward K+ conductances of astrocytes. Such a Cl--mediated modulation of an astrocytic K+ conductance will have important consequences for the progression of spreading depression through brain tissue and for astrocytic swelling in pathological situations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measuring Near Plasma Membrane and Global Intracellular Calcium Dynamics in Astrocytes

The brain contains glial cells. Astrocytes, a type of glial cell, have long been known to provide a passive supportive role to neurons. However, increasing evidence suggests that astrocytes may also actively participate in brain function through functional interactions with neurons. However, many fundamental aspects of astrocyte biology remain controversial, unclear and/or experimentally unexpl...

متن کامل

Do Astrocytes Respond to Dopamine?

Astrocytes are now recognised as important contributors to synaptic transmission control. Dopamine is a key neuromodulator in the mammalian brain and establishing the potential extent of its actions involving astrocytes is vital to our overall understanding of brain function. Astrocyte membranes can express receptors for dopamine, as well as dopamine transporters, but the full effects of dopami...

متن کامل

P 89: Reduction of Neuroinflammation in Epilepsy by Using Stem Cells Derived Astrocytes

Epilepsy is neurological disorders that afflict many people around the world with a higher prevalence rate in children and in low income countries. Temporal lobe epilepsy (TLE) is result from hippocampal sclerosis is a neurological disorder with difficult treatment. Stem cells can transform into any type of cells such as glial cells, consequently stem cells can use for medical treatment. Stem c...

متن کامل

Glutamate/aspartate transporter (GLAST), taurine transporter and metallothionein mRNA levels are differentially altered in astrocytes exposed to manganese chloride, manganese phosphate or manganese sulfate.

Manganese (Mn)-induced neurotoxicity can occur due to environmental exposure (air pollution, soil, water) and/or metabolic aberrations (decreased biliary excretion). High brain manganese levels lead to oxidative stress, as well as alterations in neurotransmitter metabolism with concurrent neurobehavioral deficits. Based on the few existing studies that have examined brain regional Mn concentrat...

متن کامل

Localization of SNARE proteins and secretory organelle proteins in astrocytes in vitro and in situ.

Astrocytes are capable of regulated release of messenger molecules. Astrocytes cultured from new born rodent brain express a variety of classical presynaptic proteins. We investigated the question whether the capability to express synaptic proteins in culture was a feature only of immature astrocytes, and whether these proteins were also expressed by astrocytes in situ. Experiments were perform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 82 1  شماره 

صفحات  -

تاریخ انتشار 1999